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Transmutation System ApproachTransmutation System Approach

CORAIL
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Key Conclusions from InitialKey Conclusions from Initial
MultiMulti--Tier Fuel Cycle StudyTier Fuel Cycle Study

i Given clean fuel processing 
(0.1% losses), typical goals for 
transmutation can be achieved
F TRU and plutonium losses to 

waste less than 0.6%
F Radiotoxicity below level of 

natural ore in < 1,000 years

i First tier thermal spectrum 
irradiation does not significantly 
reduce the radiotoxicity
F Confirms need for a final tier fast 

spectrum system

i Utilization of first tier thermal 
spectrum system can increase 
the Tier 2 support ratio
F Fewer specialized transmutation 

systems required 0.1
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Refined System StudiesRefined System Studies

i Potential to achieve deeper burnup in Tier 1 system - ANL

F Work has focused on the French CORAIL concept

F Evaluation of practicality issues

i Refinement of systems evaluation techniques - LANL

F Dynamic analyses of fuel cycle systems

i Reactor-based transmutation studies

F Proliferation resistant LWR fuel cycles – ANL, BNL, MIT

ÔMOX, thorium, and nonfertile fuel options

F Dedicated fast reactor systems – ANL, MIT, U. Mich.

ÔLow conversion ratio, heavy metal cooled, and thorium options

F Long-lived fission production transmutation – ANL

ÔPotential in both LWR and FR evaluated
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CORAIL MultiCORAIL Multi--Recycle Concept Recycle Concept 
for Plutonium Stabilizationfor Plutonium Stabilization

i Concept
F Heterogeneous assembly in a 

homogeneous core

F Standard design using fuel rods and 
assembly that are qualified
Ô Mass balance in CORAIL core is 

similar to 30% MOX case, but much 
better for multirecycling

F Pu/TRU discharged from both MOX 
and UOX pins is recycled

i Design Criteria
F Uranium enrichment < 5.0%

F Pu content in MOX < 12%

F Power peaking factor < 1.2

F No adverse effect on reactivity 
coefficients and shutdown marginUO2 rod MOX rod Guide tube

French-CEA CORAIL concept considered for Pu
stabilization (i.e., no net production of Pu)

Compatible with existing LWR
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Transmutation Performance of Transmutation Performance of 
CORAILCORAIL--PuPu ConceptConcept

i No significant degradation of 
reactivity coefficients with 
multiple recycle

i 30% MOX reaches equilibrium 
Pu isotopics within a few stages

i Solution required for minor 
actinides (MA)
F MA content higher than for UO2

assembly (~3)

F Direct disposal results in slight 
reduction of long-term radiotoxicity

F Dual tier strategy sends minor 
actinide as fuel to Tier 2

i Supporting studies pursued
F Detailed comparison of power 

distributions with CEA results Normalized Cancer Dose
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Impact of CORAILImpact of CORAIL--Pu Pu Deep BurnupDeep Burnup
on Tier 2 ADS Performanceon Tier 2 ADS Performance

Parameter Single Tier 
ADS 

CORAIL 
ADS 

BOEC Heavy metal inventory (kg) 2709 3848 
Discharge burnup (MWd/kg) 273 199 
Burnup reactivity loss (%∆k) 4.14 1.23 
Effect TRU mass reduction in first tier n/a ~75% 

 

i Extent of burnup in Tier 1 impacts Tier 2 performance
F Deep burnup results in high minor actinide and low fissile contents 

i Tier 2 fuel inventory is high because of low fissile content
i For same energy requirement, the discharge burnup is lower

F More processing required to consume material
i Improved burnup swing because of low fissile content
i Effective consumption of 75% of TRU in Tier 1

F Reduces Tier 2 support fraction requirements



AFCI Systems Studies       AFCI Systems Studies       88

LWR Recycle Reduces Tier 2 CapacityLWR Recycle Reduces Tier 2 Capacity

i Downselection studies focused on “deep burnup” of TRU in 
commercial sector by utilizing CORAIL concept
F Pu multi-recycling stabilizes Pu; only minor actinides are sent to 

transmutation sector (conversion ratio ADS=0.0; fast reactor~0.5)
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CORAILCORAIL--TRU MultiTRU Multi--recycling Results recycling Results 
Less ConvincingLess Convincing

i From physics perspective, repeated 
recycle can be achieved

i TRU content gradually increases 
with recycle stage; power peaking a 
problem at high enrichment 

i Alternate assembly designs have 
been investigated

i High minor actinide content 
complicates fuel handling; radiation 
sources and doses evaluated

i Practical considerations likely limit 
to a few recycles

Mass Evolution with TRU RecyclingMass Evolution with TRU Recycling
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Advanced LWRAdvanced LWR--BasedBased
Transmutation of WasteTransmutation of Waste

i Evaluation of proliferation resistant fuel cycles for transmutation 
of transuranics, using existing or slightly evolutionary LWRs
F Assess practical limits of approaches in terms of technological 

development needs, infrastructure requirements, reactor safety, worker 
and population dose, and economic issues

F Propose potential solutions for alleviating limitations

i Three technologies investigated: MOX, non-fertile, and thorium-
based fuel cycles
F Different recycle hypotheses using MOX fuel evaluated at ANL
F BNL investigated the use of Thorium-based fuel
F Non-fertile fuel form for waste transmutation studied by MIT

i Results indicate that TRU stabilization approach is more 
attractive than once-through burner
F Fuel handling issues limit number of recycles
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LWR Recycle Hypotheses at LWR Recycle Hypotheses at 
Equilibrium StatesEquilibrium States

Radiotoxicity target unmet.Radiotoxicity improved over PNA.
Provides additional benefits to fuel 
handling over PNA.

PNA and No Pu-242 or  
Pu242/Am-243)

Does not significantly reduce Np-237 
in repository.
Radiotoxicity target unmet.
Similar proliferation issues as Pu.

Similar benefits to Pu-only case.
With irradiation, Np-237 and a higher 
Pu-238  content provides marginal 
intrinsic radiation sources.

Pu+Np

Presence of curium limits benefits to 
the repository (Pu-240 content)
Fuel handling is a problem.

Removal of Am-241 helps in the mid-
and long-term (Np-237 minimized). Pu+Np+Am (PNA)

Fuel handling issues in fuel cycle.
Limited recycles?

Clear benefits to repository.
Provides time for advanced Series 2 
systems to be deployed.

TRU

Pu in fuel cycle needs safeguards 
(non-proliferation concerns). 
Radiotoxicity target unmet.

Easiest to implement.
Pu out of repository.
Reduction in mid-term waste 
radiotoxicity and heat load. 

Pu-only

DisadvantagesAdvantagesRecycle Hypothesis
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LMR Transmutation Scenarios with Th-FuelLMR Transmutation Scenarios with Th-Fuel
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lTwo options evaluated
lBurner - Initial loading from spent LWR 
TRU + ThO2; multiple re-cycles performed 
with additional LWR spent fuel TRU as 
sole fissile feed.
lSustainability – Same initial fuel loading 
as burner, but subsequent recycles 
include the TRU and U-233 from previous 
Th-fuel cycle, supplemented by (LEU)O2.

lBurner transmutation performance
lConsumes ~25 kg-TRU/assembly/cycle
lSharp reduction in boron worth
lPositive MTC at third recycle

lSustainable transmutation performance
lTRU balance after 4 recycles
lReduced boron worth, but
lFuel and MTC typical
lSignificant reduction in decay heat and 
toxicity, as shown in figures
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Combined Non-Fertile and Uranium Assembly
• Equilibrium state with zero net 

TRU generation while maintaining 
acceptable reactivity control and 
thermal hydraulic characteristics 
possible

• Impact on the environment is 
limited by 0.1% of reprocessing 
losses

• Number of recycle stages is 
constrained by cost and 
capabilities of fuel reprocessing, 
handling, and fabrication 
technologies

UO2 Pins

e = 4.2%
Guide 
Tubes

FFF 
Pins

• Key challenge - accumulation of Cf and Cm isotopes, which 
complicates reprocessing and fabrication due to high SFS 

CONFU

Sustainable Fuel Cycle Results - MIT



AFCI Systems Studies       AFCI Systems Studies       1414

Advanced Fast Reactor (FR) BasedAdvanced Fast Reactor (FR) Based
Transmutation of WasteTransmutation of Waste

i Support fraction much higher for fast reactor scenarios
F At CR~0.5, roughly twice capacity of CR=0 ADS systems required

i However, different constraints were applied
F For FR, limited to conventional fuel enrichment
F For ADS, nonuranium fuel form was employed
F Prevailing wisdom is that fast reactor safety performance will be 

compromised at low uranium content

i Low conversion ratio fast reactor design study - ANL
F How low can the uranium content be reduced without adverse 

consequences to reactor safety?

i Advanced reactor/fuel technology options also considered
F Dedicated heavy metal (Pb-Bi) coolant burners – MIT
F Utilization of Th-based fuel - UM
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i Conventional enrichment at CR ~ 0.5
F Enrichment gradually increases to roughly 50% TRU/HM at CR ~ 0.25

i Burnup reactivity loss increases sharply at low CR
i High leakage configurations improve void worth and expansion coefficients
i Unprotected TOP, LOF, and LOHS events analyzed for whole-core

F Passive responses are effective in all cases – mild temperature increases
F Largest temperature rise observed for TOP case at low CR

Fuel Enrichment, % TRU/HM 27/33 37/46 46/58 100 

TRU Conversion Ratio 0.47 0.31 0.22 0.00 

Net TRU consumption rate (kg/yr) 126 170 198 270 

Burnup Swing (%∆k) 2.8 3.9 4.6 6.4 

Sodium Void Worth ($) 2.2 1.5 0.53 -7.0 

Radial Expansion Worth (cents/C) -0.34 -0.40 -0.44 -0.57 

Doppler Worth (cents/C) -0.066 -0.060 -0.051 -0.011 

Peak TOP Fuel Temperature, K 863 889 898 944 

Peak LOHS Coolant Temperature, K 875 872 853 849 
 

Low Conversion Ratio Burners:Low Conversion Ratio Burners:
Performance ResultsPerformance Results
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Sample Transient Result:Sample Transient Result:
Reactivity for TOP Event, CR=0.22Reactivity for TOP Event, CR=0.22
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Reactor Designs Being Explored

Fertile Free Fuelled TRU incinerator (ABR) 

Dedicated Minor Actinide Burner with Thorium-based fuel (MABR)

Technical Challenges

Small βeff , Doppler and coolant voiding reactivity feedbacks

Innovative Technical Solutions Adopted

a) Streaming Assemblies

b) Double-entry CRD system

Advanced Fast Pb-Bi Cooled Reactors for Actinide Burning - MIT

³ TRU Destruction Rates

1. ABR  ~ 0.38 [kgHM / MWth / EFPYs] ~ 239 (192 Pu) [kgTRU / yr] 

2. MABR ~ 0.26 [kgTRU / MWth / EFPYs] ~ 170 (125 MAs) [kgTRU / yr] 

P a r a m e t e r  A B R  T h -M A B R  

A  [ ¢ ]  -1 2 .0  -7 .1  
B [ ¢ ]  -3 3 .0  -2 1 .8  

C  [ ¢ / K ]  -0 . 4 1  -0 . 2 4  
A /B  0 . 3 7  [ 0 : 1 . 5 0 ] 0 . 3 3  [ 0 : 1 . 5 0 ] 

C ∆ T /B  1 . 2 4  [ 1 : 1 . 5 4 ] 1 . 0 8  [ 1 : 1 . 5 4 ] 

∆ ρ T O P  /  |B | 1 . 4 6  [ 0 : 1 . 5 0 ] 1 . 1 1  [ 0 : 1 . 5 0 ] 

 

Safety Features 
Comparable to IFR
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• Th-U fuel increases Pu/TRU consumption.
• 239Pu reduction matched by 233U production. 

• Denatured with 238U, fissile 233U production may not 
increase proliferation risk.

• Results for typical burnup, 20% Th in fertile fuel.
  LWR Spent Fuel Feed

Transmuter Characteristics     U-TRU  Th-U-TRU
Enrichment (TRU/HM) 28% 29%
TRU feed (kg/yr) 588 599
U-233 production rate (kg/yr) 0 16
Pu-239 destruction rate (kg/yr) 80 97
TRU destruction rate (kg/yr) 117 136

Potential Use of Thorium in Transmuters
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LongLong--Lived Fission Product (LLFP)Lived Fission Product (LLFP)
Transmutation in ReactorsTransmutation in Reactors

i Systematic evaluation of 
transmutation priorities
F Tc-99 and I-129 identified

i Transmutation potential in both fast 
and thermal systems
F Conventional PWR
F Sodium-cooled ATW design

i Wide variety of target designs were 
considered in both systems
F Also homogeneous with fuel
F Moderated targets in FR

i Fuel cycle loading optimization 
studies performed
F Number of targets/regional variations
F Impact on key reactor performance 

parameters evaluated

Tc-99-Coated Fuel Pellet

Tc-99

Fuel Clad

Water

Fuel

LLFP

Annular Target in Guide Tube

Guide Tube

Inner 
Clad

Water

Water
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Key Conclusions ofKey Conclusions of
LLFP Transmutation StudiesLLFP Transmutation Studies

i Both Tc-99 and I-129 can be 
stabilized in same PWR core
F Mix Tc-99 with fuel
F Moderated CaI2 targets in guide tubes

i Fast systems attractive because of 
excess neutrons
F Preferred loading is moderated 

targets on core periphery
F Net consumption can be achieved

i Impact on repository released dose 
rates was evaluated
F LLFP dominate in short-term
F More important with TRU elimination
F Remain below regulatory limit

i Need for specialized waste form or 
LLFP transmutation not compelling 
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Summary of AFCI Systems StudiesSummary of AFCI Systems Studies

i Waste characteristics significantly improved by transmutation
F Removal of bulk uranium from high level waste
F Reduction of key parameters (heat load, dose) by TRU destruction
F Transmutation performance driven by processing loss fractions

i Tier 1 can be effective for burning plutonium and reducing 
Tier 2 infrastructure
F Extent of burnup impacts Tier 2 system performance

i A variety of LWR reactor options have been considered 
F Heterogeneous loading, MOX, thorium, and nonfertile fuel forms
F Multi-recycle of plutonium appears feasible
F TRU multi-recycle limited by practical considerations

i A variety of fast reactor options have been considered
F Low conversion ratio, heavy metal coolant, thorium fuel
F High enrichment fuels offer a safe and viable alternative/complement 

to Tier 1 partial burning to reduce the Tier 2 infrastructure
i Reactor transmutation of LLFP is possible

F Stabilize Tc-99 and I-129 in PWR, or burn in dedicated fast reactor


